
- 1. The reaction rate for the elementary reaction: $2A + B \rightarrow 2D$, is
 - A. $-r_A = kC_AC_B$ **B.** $-r_A = kC^2_AC_B$ C. $-r_A = kC_AC_BC_D$ d. $-r_A = kC^2_AC_BC_D$
- 2. SO₂ (A) is absorbed into water in a packed column. At a certain location in the column, the bulk conditions are 50°C, 2.0 atm, $y_{AG} = 0.085$ and $x_{AL}=0.001$. Equilibrium data for SO₂ between air and water at 50°C is given by $y_A = 50 \times x_A$.

Experimental values of the local mass transfer coefficients are given by $k_L = 0.18$ m/h and $k_G = 0.040$ kmol/h.m².kPa. Then, the flux at the liquid phase is

- A. 99.0 kmol/h.m²
- B. 9.9 kmol/h.m²
- C. 0.99 kmol/h.m²
- D. 45.9 kmol/h.m²
- 3. The following sketch is for:

- A. Rotary centrifugal pump
- B. Reciprocating pump
- C. Piston pump
- D. Rotary Positive displacement pump