1. For $G(s)=\frac{1}{s^{2}+2 s+2}$, determine the value of K for the following feedback control system so that the steady state error for a unit-step input is 0.01

A. 198
B. 98
C. 99
D. 49
2. The probability of getting a head in tossing of a coin is

A. 0.5

B. 1
C.1.5
D.-0.5
3. If $X_{i j}>0$ in the transportation problem, then dual variables U and V must satisfy

In reference to the following LP and associated graphical solution, answer the next two questions:

$$
\begin{array}{ll}
\text { Minimize } & 8 \mathrm{X}_{1}+4 \mathrm{X}_{2} \\
\text { subject to } & 3 \mathrm{X}_{1}+4 \mathrm{X}_{2} \geq 6 \\
& 5 \mathrm{X}_{1}+2 \mathrm{X}_{2} \leq 10 \\
\mathrm{X}_{1}+4 \mathrm{X}_{2} \leq 4 \\
\mathrm{X}_{1} \geq 0, \mathrm{X}_{2} \geq 0
\end{array}
$$

A. $C_{i j}>U_{i}+V_{j}$
B. $C_{i j}<U_{i}+V_{j}$
C. $\mathrm{C}_{\mathrm{ij}}=\mathrm{U}_{\mathrm{i}}-\mathrm{V}_{\mathrm{j}}$
D. $\mathrm{C}_{\mathrm{ij}}=\mathrm{U}_{\mathrm{i}}+\mathrm{V}_{\mathrm{j}}$

